Článek
Ačkoliv je to pro každého poučeného milovníka dinosaurů zcela absurdní, v mnoha knihách a článcích bývá uvedeno, že tyranosauři byli největšími dinosaury vůbec. V tom případě by ovšem museli být také největšími suchozemskými živočichy všech dob, protože největší dinosauři byli s přehledem těmi nejdelšími, nejvyššími a nejhmotnějšími obratlovci, kteří kdy kráčeli po pevninách naší planety.[1] I ti největší tyranosauři ale v porovnání s nimi vypadali doslova jako trpaslíci! Řeč je samozřejmě o plazopánvých dinosaurech ze skupiny Sauropoda, zejména pak o obří titanosaurní sauropody. Někteří z těchto dlouhokrkých gigantů (jako byl kolosální jihoamerický druh Argentinosaurus huinculensis) dorůstali délky až kolem 40 metrů, jiní výšky kolem 20 metrů a další hmotnosti blížící se stovce metrických tun![2] Oproti tomu největší dnes známé exempláře druhu Tyrannosaurus rex dorůstaly „pouze“ do délky asi 13 metrů a hmotnosti kolem 8900 kilogramů.[3] Není to ale vůbec málo – díky tomu můžeme tyranosaura označit za pravděpodobně nejhmotnějšího bipedního (po dvou se pohybujícího) tvora všech dob! Ačkoliv nebyl nejdelší a neměl ani největší lebku, byl tak severoamerický tyranosaurid také největším zatím známým teropodem a suchozemským masožravcem vůbec.[4]
---------
Jednou z nejlépe zapamatovatelných vlastností tyranosaura jsou i jeho extrémně zakrnělé a redukované přední končetiny. Ty měřily na délku zhruba rovný metr a nebyly tedy o moc delší než paže vzrostlého muže. Dinosaurus se s nimi nemohl dotknout navzájem ani si s nimi například nedosáhl do tlamy. V porovnání s obřím tělem o velikosti těla sloního tak přední končetiny pravěkého dravce působí až téměř komicky. Ve skutečnosti ale i přes své skromné rozměry byly tyto „pracky“ velmi silné – kost pažní je výrazně mohutnější než lidská a vědci předpokládají, že například dvojhlavý sval pažní (onen populární biceps) byl u tyranosaura asi 3,5krát silnější než u zdatného muže. Tyranosauři by pak jednou „rukou“ uzvedli břemeno o hmotnosti až 200 kilogramů.[5] V poslední době se ukazuje, že funkcí pro krátké, ale relativně silné paže mohlo být několik – přidržování kořisti při jejím dobíjení nebo samice při kopulaci, signalizační funkce (zvláště, pokud byly pracky „opeřené“) nebo kombinace některých uvedených možností.[6] Začátkem letošního roku pak byla možná potvrzena i další z dlouhodobě tradovaných eventualit – přední končetiny mohly sloužit jako malé kotvy pro stabilizaci při vstávání ze země. Nasvědčují tomu nedávno objevené fosilní otisky předních i zadních končetin tyranosaura z Nového Mexika.[7]
---------
Přesně podle tradovaného ekologického přísloví, že velká zvířata (a zejména pak ta masožravá) bývají málo početná až vzácná, o tyranosaurovi se často psalo jako o nepříliš hojném druhu, kterého byste v nejpozdnější křídě Severní Ameriky téměř neměli šanci potkat. Oproti ohromným (snad až tisícihlavým) stádům rohatých triceratopsů a kachnozobých edmontosaurů bychom na území o rozloze stovek kilometrů čtverečních měli potkat pouze několik málo kusů. Novější výzkumy z posledního desetiletí ale ukazují něco jiného. Tyranosauři byli naopak přímo extrémně početní a celkově jich údajně mohlo existovat až několik miliard! Dokonce natolik, že představují hned druhý nejpočetnější druh v ekosystémech geologického souvrství Hell Creek. Tomuto zjištění ze „sčítání“ v roce 2011 původně mnozí paleontologové nevěřili, ale pozdější výzkumy ukázaly, že jsou téměř s jistotou pravdivé.[8] Nyní totiž víme, že tyranosauři byli natolik početní a ekologicky úspěšní, že v posledních dvou milionech let křídového období doslova zaplavili ekosystémy někdejší Laramidie a jako lavina se rozšířili od současné Britské Kolumbie v Kanadě až po dnešní Mexiko.[9] V průběhu existence druhu T. rex žilo na naší planetě řádově až několik miliard těchto dinosaurů (spekulativní součet činí ve dvou různých odborních pracích 1,7 až 2,5 miliardy jedinců)[10] a jejich mláďata a subadultní jedinci vyplnili potravní niky menších a středně velkých predátorů[11].
---------
---------
Naše představy o rychlosti pohybu krále dravých dinosaurů navždy změnila slavná scéna z Jurského parku, kdy obří dospělý tyranosaurus honí jedoucí džíp rychlostí kolem 50 km/h. Tato fascinující sekvence vychází zejména z prací paleontologů Roberta T. Bakkera a jeho kolegy Gregoryho S. Paula, kteří v 70. a 80. letech minulého století přišli s představou extrémně rychlých tyranosaurů, schopných sprintovat po pláních pravěké Severní Ameriky rychlostmi až kolem 72 km/h![12] Vycházeli přitom zejména z několika anatomických adaptací pro rychlý pohyb, který u tyranosaurů a jejich příbuzných skutečně nalézáme (například přítomnost tzv. arktometatarzu, absorbujícího lépe otřesy při běhu). Ačkoliv mláďata tyranosaurů o délce kolem 6 metrů a hmotnosti mezi 500 a 1000 kilogramy mohla být skutečně extrémně rychlá (možná přes 50 km/h), u dospělců s hmotností nad 5 tun už dosažení takové rychlosti nebylo možné.[13] Dnes už nejspíš s jistotou nezjistíme, jak rychle se skutečně dospělí tyranosauři mohli pohybovat, většina novějších odborných prací, vycházejících z počítačových modelů a údajů od současných živočichů ukazují, že tyranosauři snad na kratší dobu mohli zrychlit na nějakých 17 až 27 km/h.[14] Profesionální lidské atlety by tedy rozhodně nedohnali. Jejich skutečnou předností pak měla být spíše „silová“ chůze, kterou dokázali udržet po dlouhou dobu.[15]
---------
Další tradovaný nesmysl má rovněž svůj původ v prvním filmovém Jurském parku. V tomto případě jsou však tvůrci snímku bez viny, protože kopírovali myšlenku autora knižní předlohy Michaela Crichtona. Chybějící části DNA dinosaurů byly totiž doplněny DNA současných obojživelníků (zejména žab), z nichž některé druhy zrakově vnímají pouze pohybující se objekty. Se vší pravděpodobností by to v genetickém inženýrství takto nefungovalo a rozhodně taková představa neplatí ani o skutečném tyranosaurovi. Paleontologové už dnes předpokládají, že tento gigantický dravec měl naopak velmi dobrý zrak, doplněný ještě lepším čichem a dalšími vytříbenými smysly.[16] Je dokonce možné, že tyranosauří zrak byl až třináctkrát ostřejší než u člověka![17] Samotná oční bulva teropoda byla velká asi jako grapefruit a oči díky rozšířené bázi lebky směřovaly poněkud dopředu, což propůjčovalo tyranosaurům schopnost binokulárního (stereoskopického) vidění. Mohli tak lépe odhadovat vzdálenosti, což z nich patrně činilo ještě efektivnější lovce. Slavný americký paleontolog Jack Horner se dříve domníval, že dospělí tyranosauři byli výlučnými mrchožrouty, a proto také měli „malé, korálkovité“ oči.[18] Dnes je pohled na tyranosauří zrak většinou opačný – ikonický dravec měl velmi dobrý zrak i další smysly, a to nejen na dinosauří poměry.
---------
[1] Paul, G. S. (2019). Determining the largest known land animal: A critical comparison of differing methods for restoring the volume and mass of extinct animals (PDF). Annals of the Carnegie Museum. 85 (4): 335–358.
[2] González Riga, B. J.; et al. (2016). A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Scientific Reports. 6: 19165.
[3] Persons, W. S.; et al. (2020). An Older and Exceptionally Large Adult Specimen of Tyrannosaurus rex. The Anatomical Record. 303 (4): 656–672.
[4] Hutchinson, J. R.; et al. (2011). A Computational Analysis of Limb and Body Dimensions in Tyrannosaurus rex with Implications for Locomotion, Ontogeny, and Growth. PLOS ONE. 6 (10): e26037.
[5] Carpenter, K.; Smith, M. (2001). Forelimb Osteology and Biomechanics of Tyrannosaurus rex. In Tanke, D. H.; Carpenter, K. (eds.). Mesozoic vertebrate life. Bloomington: Indiana University Press. str. 90–116. ISBN 978-0-253-33907-2.
[6] Arp, D. (2020). Developing an Assessment to Evaluate Tyrannosaurus rex Forelimb Use Cases. Biosis: Biological Systems. 1 (3): 102-108.
[7] Caneer, T.; et al. (2021). Tracks in the Upper Cretaceous of the Raton Basin possibly show tyrannosaurid rising from a prone position. In: Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin. 82: 29–37.
[8] Horner, J. R.; et al. (2011). Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA. PLoS ONE. 6 (2): e16574.
[9] Holtz, T. R. Jr. (2021). Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica. Canadian Journal of Earth Sciences. 58 (9).
[10] Marshall, C. R.; et al.(2021). Absolute abundance and preservation rate of Tyrannosaurus rex. Science. 372 (6539): 284-287.
[11] Schroeder, K.; et al. (2021). The influence of juvenile dinosaurs on community structure and diversity (PDF). Science. 371 (6532): 941-944.
[12] Bakker, R. T. (1986). The Dinosaur Heresies. Zebra Books, str. 218.
[13] Hutchinson, J. R.; Garcia, M. (2002). Tyrannosaurus was not a fast runner. Nature. 415 (6875): 1018–21.
[14] Sellers, W. I.; et al. (2017). Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis. PeerJ. 5: e3420.
[15] van Bijlert, P. A.; et al. (2021). Natural Frequency Method: estimating the preferred walking speed of Tyrannosaurus rexbased on tail natural frequency. Royal Society Open Science. 8 (4): 201441.
[16] Carr, T. D.; et al. (2017). A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Scientific Reports. 7: 44942.
[17] Stevens, K. A. (2006). Binocular vision in theropod dinosaurs. Journal of Vertebrate Paleontology. 26 (2): 321–330.
[18] Horner, J. R. (1994). Steak knives, beady eyes, and tiny little arms (a portrait of Tyrannosaurus as a scavenger). The Paleontological Society Special Publication. 7: 157–164.